Product Description
Product Description:
Item Name | Cushioned Sleeve Bearing Coupling Flexible Coupling NBR Jaw Coupling for Pumps, Motors |
Application | motor, pumps, gear boxes, compressors, blowers, mixers, and conveyors |
Color | black or as Customer's Request |
Thickness |
5mm To 8mm (customized) |
Package | According to Your Requirements |
MOQ | 1000PCS |
Processing Method | Compression Molding |
Service | OEM and ODM Are Also Welcomed |
Material | Customized. Aluminum, Stainless Steel,NR,SBR, NBR, EPDM, MQ, SR etc. |
Sample | Available. Trial Sample 7 to 20 days. |
Product Picture
These stainless steel shaft couplers allow you to couple 2 size shafts together. They can be used for connecting motor shafts to drive shafts, or 2 different-sized shafts. These shaft couplers have a length of 0.75", a outer diameter of 0.42", and couple 1/4" to 5mm shafts.
Connect this to that with a set-screw coupler. These couplers are made of machined aluminum and have a spiral cut that makes them slightly flexible so they can be fit to 2 shafts even if they are not perfectly co-linear and will help reduce binding effects.
This coupler will connect a 5mm diameter shaft to an 8mm diameter shaft. A perfect add on for motors . Comes with 2 sets of double set-screws (two per side) for secure attachment. You'll need a 2mm allen wrench to tighten/loosen the set-screws.
About HangZhousun
HangZhousun Group
Total Number of Personnel:>350 staffs (as of June.24, 2571)
Total Production scale: >35000 square meters
Head Office: HangZhousun Rubber & Plastic Technology Co.,Ltd
Founded: 2002
Location: HangZhou, ZheJiang
Main Business: Compression Molding Rubber Products & Parts, etc.
Branch Company: HangZhou Mingrui Intelligent Technology Co., Ltd
Established: 2018
Location: HangZhou, ZheJiang
Main Business: Molds, Refined Hardware, Intelligent Automation Equipment, etc.
Branch Company: ZheJiang Yousheng New Material Technology Co.,Ltd
Established: 2018
Location: HangZhou, ZheJiang
Main Business: Extrusion Molding Rubber Products & Parts, etc.
R&D and Quality Control
HangZhousun's R&D team has more than 120 staff ,and gathers CHINAMFG and creative experts and professors.
Keeping responsibility in mind, R&D team brings multiple capabilities, supports HangZhousun keep leading at rubber&plastics industry.
R&D team forms strict management system on each project in compliance with latest world scientific standard and requirements.
We strictly emphasize on quality and management control.
Our R&D and production management follows TUV & IS014001 Environmental System.
Beyond these, Our finished products meet approval of ISO9001, IATF16949 & UL quality control system.
HangZhousun can make our products meet standards as customer's demand like CE, ROHS, REACH, CP65, PAHS, FDA, TSCA,etc.
(IF YOU WANT MORE DETAIL INFORMATION OF OUR COMPANY AND PRODUCTS, WELCOME TO CONTACT AND CHAT WITH US. SHOULD ANY OF OUR ITEMS BE OF INTEREST TO YOU, PLEASE LET US KNOW WITH THE HOPE THAT WE MAY WORK WITH YOU IN THE FUTURE. )
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
How do jaw couplings handle shaft misalignment in rotating equipment?
Jaw couplings are mechanical devices used in rotating equipment to connect two shafts and transmit torque. One of the key advantages of jaw couplings is their ability to handle shaft misalignment. Shaft misalignment can occur due to various reasons, including manufacturing tolerances, thermal expansion, foundation settling, or general wear and tear. Jaw couplings can accommodate misalignment in three primary ways:
- Angular Misalignment: Jaw couplings can handle small angular misalignments between the connected shafts. The flexible nature of the elastomer spider (the central element in the jaw coupling) allows for a certain degree of angular movement between the hubs without exerting excessive forces on the connected equipment.
- Parallel Misalignment: Parallel misalignment occurs when the two shafts are not perfectly aligned in a straight line. Jaw couplings can tolerate some amount of parallel misalignment due to the flexibility of the elastomer spider. This flexibility allows the hubs to move slightly relative to each other, thereby reducing the transmission of misalignment-induced forces to the equipment.
- Axial Misalignment: Axial misalignment refers to the offset between the axial positions of the connected shafts. While jaw couplings are primarily designed for torque transmission and misalignment compensation in angular and parallel directions, they can also handle minor amounts of axial misalignment due to the elastomer spider's ability to absorb limited axial movement.
It is essential to note that jaw couplings have their limits in handling misalignment. Excessive misalignment beyond their design capabilities can lead to premature wear, reduced coupling life, and potential damage to the connected equipment. Therefore, it is crucial to understand the specific misalignment limits of the jaw coupling being used and ensure that the equipment operates within those limits.
In summary, jaw couplings handle shaft misalignment in rotating equipment by utilizing the flexibility of the elastomer spider to accommodate small angular, parallel, and axial misalignments. This feature helps protect the connected equipment from the detrimental effects of misalignment and ensures smooth and reliable operation.
What are the factors influencing the thermal performance of a jaw coupling?
The thermal performance of a jaw coupling is influenced by several factors that affect its ability to dissipate heat and handle temperature fluctuations during operation. Here are the key factors that can impact the thermal performance of a jaw coupling:
- Material Selection: The choice of materials used in the construction of the jaw coupling plays a significant role in its thermal performance. High-quality materials with good thermal conductivity can efficiently dissipate heat, reducing the risk of overheating and premature wear. Common materials used in jaw couplings include steel, aluminum, and various elastomers.
- Elastomer Spider: The elastomer spider in the jaw coupling is a crucial component that can influence thermal performance. The type of elastomer and its specific characteristics, such as hardness and thermal conductivity, can affect the coupling's ability to absorb and dissipate heat generated during operation.
- Operating Speed: The rotational speed of the coupling impacts its thermal performance. Higher operating speeds can generate more heat due to increased friction and stress on the coupling components. It is essential to ensure that the jaw coupling is rated for the specific operating speed of the application to prevent overheating and premature failure.
- Torque and Load: The torque and load applied to the jaw coupling can also influence its thermal performance. Higher torque and load levels can result in increased heat generation. Properly sizing the coupling based on the application's torque and load requirements is essential to prevent excessive heat buildup.
- Operating Environment: The environment in which the jaw coupling operates can impact its thermal performance. For example, if the coupling is located in an area with limited airflow or high ambient temperatures, it may experience reduced heat dissipation capabilities. On the other hand, an environment with good ventilation can help in maintaining the coupling's thermal performance.
- Lubrication: Some jaw couplings may require lubrication to reduce friction and heat generation. Proper lubrication can enhance the coupling's thermal performance and extend its service life. It is essential to follow the manufacturer's guidelines regarding the type and frequency of lubrication to ensure optimal performance.
- Continuous vs. Intermittent Operation: The thermal performance of a jaw coupling can also be influenced by the nature of its operation—continuous or intermittent. Intermittent operation allows the coupling to cool down between cycles, reducing the overall heat buildup compared to continuous operation, which may lead to higher operating temperatures.
Overall, careful consideration of these factors is crucial in ensuring the efficient thermal performance of a jaw coupling. Proper selection, installation, and maintenance of the coupling based on the specific application requirements can help prevent overheating, reduce wear, and prolong the coupling's lifespan.
Limitations and Disadvantages of Using Jaw Couplings
While jaw couplings offer several advantages, they also have some limitations and disadvantages that should be considered when selecting them for specific applications:
- Angular Misalignment: Jaw couplings are sensitive to angular misalignment, and excessive misalignment can lead to increased wear and reduced service life.
- Radial Misalignment: Similar to angular misalignment, radial misalignment should be kept within acceptable limits to prevent premature wear.
- Temperature Limitations: The operating temperature range of jaw couplings may be limited by the material used. For high-temperature applications, other coupling types may be more suitable.
- Shock Load Absorption: While jaw couplings can handle moderate shock loads, they may not be ideal for applications with severe shock loads, which can lead to increased stress and failure.
- Torsional Stiffness: Jaw couplings have a certain level of torsional stiffness, which means they may not provide the same level of vibration isolation as other coupling types.
- Backlash: Jaw couplings can have some degree of backlash due to their elastomeric element, which may not be desirable in precision positioning applications.
- Speed Limitations: High-speed applications may require careful consideration of the jaw coupling's design and material selection to avoid issues related to centrifugal forces.
Despite these limitations, jaw couplings remain a popular choice in many applications due to their ease of installation, simple design, and cost-effectiveness. Proper selection, installation, and maintenance can help mitigate some of these limitations and ensure optimal performance and reliability of the jaw coupling.
editor by CX 2024-02-14