Product Description
Densen tailored jaw type coupling,jaw coupling,customized coupling
Product Name | jaw coupling |
DN mm | 12~160mm |
Rated Torque | 25~25000 N·m |
Allowable speed | 15300~1500 N·m |
Material | 35CrMo/ZG270/45# steel/Aluminum alloy |
Application | Widely used in metallurgy, mining, engineering and other fields. |
Product show
Company Information
HangZhou New CZPT Casting and Forging Company is the sales company of HangZhou CZPT Group of Companies. Features of New CZPT simply summarized as below:
1. Trusted supplier of steel, iron & non-ferrous components;
2. Extensive documented quality program in place.
3. Castings, forgings, stampings, machining, welding & fabrication services.
4. 9 related factories, over 50 joint-venture sub-contractors.
5. 25+ years of manufacturing experiences, 10+ years of exporting experience
6. 100% of products sold to overseas customers.
7. 50% of customer base is forturne 500 companies.
Processing support
Casting Service:
Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify.
New Densen offers multiple investment casting, sand casting, permanent casting, die casting, low pressure casting, ESR casting, lost foam casting, etc. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.01Kg to 150 tons separately.
Forging Service:
Forging is a manufacturing process involving the shaping of metal using localized compressive forces. New CZPT offers open die forging, closed die forging and ring forging services. Material can be steel, iron and non-ferrous. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.1Kg to 50,000Kgs.
Stamping Service:
Stamping (also known as punching) is the process of placing flat sheet metal in either blank or coil form into a stamping press where a tool and die surface forms the metal into a net shape.
New Densen-XBL has more than 60 sets stamping equipments, is the designed supplier for several famous bands automotive companies, has the full ability to offer whole processes from blanking, stamping, welding, to electrostatic spraying for CZPT customers.
Welding & Fabrication Service:
Welding Frabrication is the fabrication process of metal structures by cutting, bending, then assembling the components together through welding
New CZPT offers manual arc welding ,laser welding and robot welding etc. UT, MPT,RT,PT all are available used for inspection, WPS &PQR (Welding Process Specification& Procedure Qualification Records) before production is available under clients' requirement.
Machining Service:
Machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process.
New Densen-XBL has more than 60 sets precision machines incl. CNC center, boring, milling, lathing, etc., and more than 300 inspection instruments incl. 3 sets CMM with grade μm. Repeated tolerance can be maintained as 0.02mm. Meanwhile awarded by certificates ISO9001-2008; ISO/TS16949. New Densen-XBL specialized in high precise machining for small-middle-big metal components.
3rd Party Inspection:
New Densen worked as 3rd party inspection center besides its sister factories or sub-contractors' self inspection, Offers process inspection, random inspection and before delivedry inspection services for material, mechanical, inside defects, dimentional, pressure, load, balance, surface treatment, visual inspection and test. Weekly project follow-up report together with pictures and videos, full quality inspection documentation available.
New CZPT also designed as 3rd party inspection representative for several customers when their products made by other suppliers.
Application:
Contact us
Contribution of Jaw Coupling to Equipment Longevity
Jaw couplings play a vital role in enhancing the longevity and reliability of connected equipment in mechanical power transmission systems. The design and features of jaw couplings contribute to minimizing wear, reducing downtime, and protecting the equipment from harmful forces. Here's how jaw couplings contribute to equipment longevity:
- Shock Absorption: Jaw couplings have elastomeric spider inserts that act as shock absorbers, dampening vibrations and impact loads. This helps in protecting the connected equipment from sudden shocks and extends its operational life.
- Misalignment Compensation: In real-world applications, shaft misalignment is common due to thermal expansion, machine settling, or manufacturing tolerances. Jaw couplings can tolerate a certain degree of misalignment, reducing stress on bearings, seals, and other components of the equipment.
- Overload Protection: During overloads or torque spikes, jaw couplings can flex slightly, absorbing excess torque and preventing damage to the equipment. This overload protection feature prevents catastrophic failures and extends the life of mechanical components.
- Backlash Reduction: Excessive backlash in a power transmission system can lead to inaccuracies in motion control and wear on components. Jaw couplings are designed to provide low backlash, enhancing precision and minimizing wear on gears and other sensitive parts.
- Resilience to Contaminants: Jaw couplings often feature enclosed designs that protect the elastomeric spider from contaminants like dust, dirt, and moisture. This helps in maintaining the coupling's performance and preventing premature failure due to external elements.
- Low Maintenance: Compared to some other types of couplings, jaw couplings require minimal maintenance. Regular lubrication and inspection of the coupling can significantly extend its life and keep the connected equipment running smoothly.
- Easy Installation: The simple and compact design of jaw couplings makes them easy to install and integrate into various mechanical systems. Proper installation ensures efficient power transmission and reduces the chances of component damage.
Overall, jaw couplings contribute to equipment longevity by providing protection against shock loads, compensating for misalignment, preventing overloads, reducing backlash, and offering resilience to environmental factors. By selecting the right jaw coupling for the application and following proper maintenance practices, users can maximize the lifespan of connected equipment and improve the overall efficiency of their mechanical systems.
How do jaw couplings handle axial movement in rotating machinery?
Jaw couplings are primarily designed to handle angular and parallel misalignment between rotating shafts. While they are not specifically designed for axial movement compensation, they can accommodate a limited amount of axial movement under certain conditions.
The ability of a jaw coupling to handle axial movement depends on the specific design of the coupling and the type of elastomer spider used. The elastomer spider serves as the flexible element between the two coupling hubs and is responsible for transmitting torque and compensating for misalignment. Some jaw couplings have an elastomer spider with axial flexibility, allowing the coupling to accommodate minor axial movements while maintaining effective torque transmission.
However, it is essential to note that jaw couplings have limitations regarding axial movement. They are not designed for significant axial loads or axial displacements. Excessive axial movement can lead to premature wear and damage to the elastomer spider, reducing the coupling's performance and lifespan.
If an application requires significant axial movement compensation, other types of couplings may be more suitable. For instance, flexible beam couplings or bellows couplings are designed specifically to handle axial movement and are often used in applications where axial misalignment is a critical consideration.
In summary, while jaw couplings can handle a certain amount of axial movement, they are primarily intended for angular and parallel misalignment compensation. For applications with significant axial movement requirements, it is essential to consider coupling types explicitly designed for this purpose.
Selecting the Appropriate Jaw Coupling Size
Choosing the right jaw coupling size for a specific application involves considering several factors:
- Torque Requirements: Determine the maximum torque that the coupling will need to transmit in the application. Make sure to account for any peak or intermittent loads.
- Shaft Diameter: Measure the diameter of the shafts to be connected. The coupling's bore size should match the shaft diameter for proper fit and secure power transmission.
- Speed: Consider the rotational speed of the application. High-speed applications may require special high-speed jaw couplings.
- Misalignment Compensation: Evaluate the level of misalignment present in the system, including angular, parallel, and axial misalignment. Choose a jaw coupling with appropriate misalignment capabilities to avoid premature wear and failures.
- Environmental Factors: Assess the environmental conditions, such as temperature, humidity, and presence of chemicals or contaminants, as these factors can impact the coupling's material selection and performance.
- Service Factors: Some applications may have service factors that affect the required torque capacity. Apply service factors as needed to ensure the coupling can handle the application's demands.
- Space Constraints: Consider the available space for the coupling. Ensure that the selected jaw coupling can fit within the given space constraints.
- Compliance with Standards: If applicable, verify that the chosen jaw coupling meets industry or application-specific standards and regulations.
By taking these factors into account, engineers and designers can determine the appropriate jaw coupling size that will provide reliable and efficient power transmission in the specific application.
editor by CX 2023-08-18